MANAGING FHIR INNOVATIONS IN HEALTHCARE ORGANIZATIONS: THE UNIVERSITY OF UTAH EXPERIENCE

2018 UNIVERSITY OF WASHINGTON FHIR WORKSHOP
SEPTEMBER 24, 2018

KENSaku KAWAMOTO, MD, PHD, MHS
ASSOCIATE CHIEF MEDICAL INFORMATION OFFICER
VICE CHAIR OF CLINICAL INFORMATICS, DEPT. OF BIOMEDICAL INFORMATICS

©KENSaku KAWAMOTO, 2018
DISCLOSURES

• In the past year, I have been a consultant or sponsored researcher on clinical decision support for ONC*, Hitachi, McKesson InterQual, and UC San Francisco

• Several of the apps, services, and tools described are being commercialized to enable wider impact

*via various subcontractors
AGENDA

• Background and Rationale for FHIR Innovations
• University of Utah IAPPS Initiative
• Governance, Strategy, and Program Considerations
• Overview of Technical Approach
• Lessons Learned and Recommendations
UNIVERSITY OF UTAH HEALTH

- Clinical context
 - 4 hospitals, 10 community clinic centers
 - 1,100 physicians, 2 million annual visits
 - 34,000 annual discharges

- Technical context
 - Epic system-wide since 2014
 - On Epic 2017
 - About to upgrade to 2018
RATIONALE FOR FHIR INNOVATIONS

• Enables tackling important problems for which native EHR functionality is inadequate
 • Provides an alternate strategy to “ask and hope”
• Feasible to accomplish as a part of a holistic EHR optimization strategy
 • Epic, Cerner, and other major EHR vendors are supportive
• Can harness the innovation of others
 • Local stakeholders, other institutions, vendors
• Could potentially commercialize solutions
• Powerful enabler for externally funded R&D
UNIVERSITY OF UTAH IA APPS INITIATIVE

• Acronym for Interoperable Apps and Services
• Goal: improve patient care and the provider experience through innovative, interoperable extensions to native Epic functionality
• Multi-stakeholder initiative started by University of Utah in 2016
• Core part of larger Re-Imagine EHR initiative
GOVERNANCE AND RESOURCING

• Steering committee co-chaired by CIO & CMIO
 – Charged with strategy, prioritization, and resourcing

• Multi-disciplinary project team
 – IT and Informatics, including 7 team members trained and certified in developing new EHR interfaces including FHIR
 – GApp Lab (therapeutic gaming)
 – Clinical and external collaborators

• Baseline operational investment + external funding
 – ~$20M in external grant funding secured leveraging interoperability infrastructure
INITIAL STRATEGY

• Gain experience with initial implementations
• Complete a few projects end-to-end prior to widely soliciting for potential projects
• Establish processes and resources for efficient development, deployment, support, and eventual retirement of apps and services
• Educate and empower various stakeholders to effectively provide value
• Ensure security as an essential priority
CONSIDERATIONS FOR PRIORITIZATION

• Does Epic already do this well?
• Will Epic tackle this problem soon?
• Are there existing operational practices that will be changed? Do they want to change?
• What is the likely clinical impact?
• What is the likely financial impact?
• Is there a committed clinical champion?
• Are there additional resources available?
• How hard will it be to implement?
SECURITY / INFRASTRUCTURE

• Independent code review
• Third party code audit
• Currently focused on implementations inside the firewall
 – Broad nature of FHIR scopes is an issue
• Environments strategy that supports volume testing
EVALUATION

• Critical for understanding impact and demonstrating ROI
 – Use
 – Satisfaction
 – Clinical and financial impact
• Need to explicitly prioritize
• High synergy with research
RESEARCH SYNERGY

• Multiple grants awarded (> $20M); more in pipeline. Examples:
 • NCI grant for individualized cancer risk management
 • CMS grant for HIE data integrated with EHR via SMART on FHIR
 • Hitachi sponsored research for diabetes predictive modeling and decision support delivered via SMART on FHIR
 • PCORI contract for integrating tobacco cessation across 30 federally quality health centers leveraging CDS Hooks
 • AHRQ proposal for lung cancer screening decision support and shared decision making using SMART on FHIR and CDS Hooks

• Well-suited to multi-institutional grant applications
EPIC-SUPPORTED INTEGRATION POINTS

• Interconnect, HL7 FHIR*
 – Allows obtaining real-time data, placing orders, & saving data

• ClinKB/Active Guidelines, HL7 SMART*
 – Allows embedding any Web-based “App” into Epic

• BPA Web services, HL7 CDS Hooks*
 – Allows an external Web service to provide CDS

*Potential for interoperability with EHRs beyond Epic
APPROACH TO DATA: NATIVE + CUSTOM FHIR

- Epic Chronicles Database
- Epic APIs (FHIR, other)
- Custom Web Service APIs
- FHIR Wrapper

© KENSAKU KAWAMOTO, 2018
APP FRAMEWORK: SMART

EHR

FHIR Wrapper

SMART Launch Token

Usual authentication

User

OpenCDS

Rewritten SMART Launch URL

Display

Data

Guidance

Obtain Access Token

Data Retrieval

App
CDS SERVICE FRAMEWORK: CDS HOOKS

- EHR
 - BPA Web Services
 - FHIR Wrapper
- CDS Hooks Adapter
 - CCDA
 - FHIR + OAuth 2.0 Access Token
- CDS Service (OpenCDS)
 - Guidance Card
 - OAuth 2.0 Token
 - FHIR
LESSONS LEARNED AND RECOMMENDATIONS

• Lessons learned
 – FHIR, SMART, and CDS Hooks should be a part of a leading healthcare organization’s holistic approach to EHR optimization
 – Baseline operational investment is critical
 – There is high synergy with research
 – Custom FHIR interfaces are often needed to meet user needs

• Recommendations
 – Make a baseline operational investment
 – Incrementally add institutional capacity, e.g., via external grants
THANK YOU!

Kensaku Kawamoto, MD, PhD, MHS
Associate Chief Medical Information Officer
Associate Professor and Vice Chair for Clinical Informatics, Dept. of Biomedical Informatics
University of Utah

kensaku.kawamoto@utah.edu